We present a number of exponential-time algorithms for problems in sparse matrices and graphs of bounded average degree. First, we obtain a simple algorithm that computes a permanent of an n×n matrix over an arbitrary commutative ring with at most dn non-zero entries using O⋆(2(1−1/(3.55d))n) time and ring operations, 1 improving and simplifying the recent result of Izumi and Wadayama [FOCS 2012].\ud\udSecond, we present a simple algorithm for counting perfect matchings in an n -vertex graph in O⋆(2n/2) time and polynomial space; our algorithm matches the complexity bounds of the algorithm of Björklund [SODA 2012], but relies on inclusion–exclusion principle instead of algebraic transformations.\ud\udThird, we show a combinatorial lemma that bounds the number of “Hamiltonian-like” structures in a graph of bounded average degree. Using this result, we show that\ud\ud1. a minimum weight Hamiltonian cycle in an n-vertex graph with average degree bounded by d can be found in O⋆(2(1−εd)n) time and exponential space for a constant εd depending only on d;\ud2. the number of perfect matchings in an n-vertex graph with average degree bounded by d can be computed in View the MathML source time and exponential space, for a constant View the MathML source depending only on d.\ud\udThe algorithm for minimum weight Hamiltonian cycle generalizes the recent results of Björklund et al. [TALG 2012] on graphs of bounded degree.
展开▼
机译:对于稀疏矩阵和有界平均度图中的问题,我们提出了许多指数时间算法。首先,我们获得一种简单的算法,该算法使用O⋆(2(1-1 /(3.55d))n)时间和环,在最多n个非零项的任意交换环上计算n×n矩阵的永久性操作,1改进和简化了Izumi和Wadayama的最新结果[FOCS 2012]。\ ud \ ud其次,我们提出了一种简单的算法,用于计算O⋆(2n / 2)时间和多项式空间中n顶点图中的完美匹配;我们的算法与Björklund[SODA 2012]算法的复杂度边界相匹配,但是它依赖于包含-排除原理而不是代数变换。\ ud \ ud第三,我们显示了一个组合引理,该引理界定了“ Hamiltonian”结构的数量。有界平均度图。使用此结果,我们显示该\ ud \ ud1。可以在O⋆(2(1-εd)n)时间和指数空间中找到一个常数d的n顶点图中具有以d为界的最小权重哈密顿环,该常数仅取决于d。 \ n \ ud \ ud最小权重的算法可以在n顶点图中以d为界的平均度数中的完美匹配数进行计算。对于常数,仅取决于d。哈密顿循环概括了Björklund等人的最新结果。 [TALG 2012]关于有界度图。
展开▼